Проверяемый текст
Федоров, Андрей Владимирович; Научные основы создания автоматизированной системы управления противопожарной защитой нефтеперерабатывающих производств (Диссертация 2000)
[стр. 33]

33 ных и неорганизованных источников выделения, так и вследствие аварийной разгерметизации (полной или частичной) аппаратов, технологических трубопроводов, приводящей к мгновенному выбросу большого количества углеводородного топлива.
Защита AT-ВБ М11ПЗ от аварийного образования зон ВОК обеспечивается использованием комплексных систем, позволяющих автоматически контролировать изменение концентрации углеводородных примесей в воздухе промышленной территории наружных установок, включением устройств защиты (паровые или водяные завесы), проведением оценки риска предприятия и прогнозированием динамики полей аварийной загазованности на территории и за ее пределами.
1.3.
Анализ пожарной опасности и оценка вероятностей аварийных ситуаций на ТУ висбрекинга Пожаровзрывоопасность процесса висбрекинга определяют следующие факторы: > Физико-химические и пожароопасные свойства исходных реаген тов и продуктов реакции; > Свойства реакционной среды и применяемых инициаторов; > Параметры процесса, происходящего в реакторе (давление, температура, объемная или массовая скорость); > Тип и конструктивные особенности пожаровзрывоопасных аппаратов.
Химизм висбрекинга.
Преобразование компонентов исходного сырья происходит в результате последовательно-параллельных реакций, протекающих преимущественно по радикально-ценному механизму.
Анализ реакций, типичных д.гя термод еструктивных процессов показывает, что термодинамическая вероятность их протекания возрастает с повышением температуры.
Процесс висбрекинга является высокотемпературным.
Превращения при висбрекинге обусловлены переходом нефтяного сырья с большим запасом свободной энергии в низкомолекулярные газообразные, среднемолекулярные дистиллятные фракции и в кокс.
В ходе процесса висбрекинга крупные молекулы сплошной вязкой фазы крекируется с образованием молекул меньшего размера.
Новые асфальтены образуются из мальтенов, а мальгеновая фаза меняет свой состав так, что, в конце концов, равновесие междуасфальтенами и мальтенами нарушается в такой мере, что часть асфальтенов будет флокулирована.
В этот момент крекируемое сырье становится неустойчивым.
[стр. 34]

35 зовоздушной смеси; 0,9 доля энергии, затрачиваемой на формировании ударной волны при взрыве ТНТ.
Результаты расчетной оценки энергетического потенциала взрывопожароопасных установок, приведенного к тротиловому эквиваленту, отражены на рис.
1.5.
Анализ уровня опасности технологических установок свидетельствует, что наиоолее опасными являются: парк емкостей высокого давления газораздаточнои станции (ГРС), установка каталитического крекинга Г-43-107, установка подготовки сырья, установка ЭЛОУ-АВТ-6.
Из приведенного анализа энергетического потенциала наружных установок следует, что на промышленной территории завода существует потенциальная опасность крупных аварии с оольшими разрушительными последствиями.
Далее рассмотрены возможные последствия таких аварий для отдельно взятых потенциально опасных технологических установок.
В соответствии с [64] расчет радиусов зон разрушения промышленных объектов при объемных взрывах парогазовоздушных облаков массой более 5 т проводился по формуле R = Kl]WT , где К безразмерный коэффициент, определяемый по характеристикам реальных ЧУ повреждении типовых здании и промышленных сооружении, вызванных ударными волнами при взрывах [69].
Результаты расчетов представлены в табл.
1.8.
Таким образом, рост крупных аварий, сопровождавшихся пожарами и взрывами, свидетельствует о недостаточной эффективности пожаровзрывобезопасных мероприятий.
При этом аварии, как правило, связаны с неконтролируемым выбросом горючих сред в атмосферу, загазованностью территории и образованием взрывоопасных облаков ТВС, которые образуются как при регламентном режиме работы технологического оборудования в случае достаточно длительного истечения из организованных и неорганизованных источников выделения, так и вследствие аварийной разгерметизации (полной или частичной) аппаратов, технологических трубопроводов, приводящей к мгновенному выбросу большого количества углеводородного топлива.


[стр.,123]

124 работки связаны, как правило, с неконтролируемым выбросом горючих сред в атмосферу, загазованностью территории и образованием взрывоопасных облаков топливно-воздушной смеси.
Локальные зоны взрывоопасных концентраций могут образовываться как при нормальном (регламентном) режиме работы технологического оборудования (в случае достаточно длительного истечения из организованных и неорганизованных источников выделения), так и вследствие аварийной разгерметизации (полной или частичной) аппаратов, технологических трубопроводов, приводящей к мгновенному выбросу значительного количества углеводоро И топлива.
Выполнен анализ уровня открытых технологических ходя из расчета энергетического потенциала, образующегося в технологии углеводородного сырья и продуктов его переработки, в результате которого определены наиболее взрывопожароопасные установки.
Общее энергосодержание углеводородного сырья, одновременно обращающегося в технологических установках и резервуарных парках Московского НПЗ, эквивалентно 2,5 Мт тринитротолуола.
С целью разработки методологии прогнозирования и оценки вероятности аварийных ситуаций на объектах нефтепереработки проведен анализ риска на основе банка данных об авариях и надежности функционирования различных узлов, регулирующих устройств, КИП и А, других элементов оборудования технологических установок.
Для наиболее опасных технологических установок и газораспределительной станции проведены оценки риска и вероятности аварийных ситуаций.
Методом экспертной оценки выделены наиболее опасные элементы установок, потенциальные опасности и возможные аварийные события; приведены соответствующие им вероятности, построены деревья отказов, представлены результаты расчетов параметров выброса фракций углеводородов с учетом технологических параметров блоков.
Дана оценка снижения вероятности возникновения аварийных ситуаций при использовании газовых и инфракрасных детекторов обнаружения утечек углеводородных фракций и их возгораний.
Выполнены расчеты параметров и нагрузок на фронте волны сжатия при дефлаграционном горении газового облака в атмосфере, построены карты равного давления в проходящей волне сжатия при аварийных взрывах сжиженных углеводородных газов, определены возможные зоны разрушений промышленных зданий и выV/ полнен анализ последствии возможного аварийного взрыва.

[Back]