Проверяемый текст
Федоров, Андрей Владимирович; Научные основы создания автоматизированной системы управления противопожарной защитой нефтеперерабатывающих производств (Диссертация 2000)
[стр. 84]

84 ориентацию пути; она не обязательно совпадает с ориентацией составляющих его ветвей.
Если начало и конец пути совпадают, то он замкнутый (m-путь), иначе разомкнутый (j-путь).
Путь задается перечислением составляющих его ветвей со знаком плюс, если их ориентации совпадают, и со знаком минус если не совпадают.
Ветви задают отдельные измерения и определяют размерность пространства сети.
Пути проходят через одну или несколько ветвей и служат координатами такого пространства.
Пути можно складывать, вычитать, выражать друг через друга, сравнивая составляющие их ветви.
Поэтому пути могут быть линейно зависимы или линейно независимы.
Полный набор линейно-независимых путей для данной сети образует базис.
Вес другие пути в сети выражаются линейными комбинациями базисных путей.
При изменениях соединений ветвей, пути могут меняться.
Приведем пример сети из четырех свободных ветвей и четырех связанных ветвей.
Пути в сети из четырех свободных ветвей
обозначены как ра, а пути в сети из четырех связанных ветвей как рь' , где а, Ь принимают значения от 1 до 4, перечисляя все пути.
В свободной сети пути совпадают
с направлением ветвей.
Если выразить пути в связанной сети через пути в свободной сети, рь
= СУ ра, то коэффициенты при путях-ветвях имеют вид матрицы преобразования СУ: a pi р2 р3 P4 1 1 -1 1 1 1 -1 Сьа это матрица путей в сети отдельных, свободных ветвей в пути в сети связанных ветвей.
Обратное выражение путей в связанной сети через пути свободных ветвей, т.е.
фактически через ветви, а также их матрица преобразования, имеют вид:
[стр. 158]

159 -lC (Ct С)-1 Ct + A (At A)'1 At = I, (1) где I единичная матрица.
Такая закономерность отличается от известной ортогональности матриц преобразования: Ct = (А)'1 (их подматрицы представляют собой цикломатическую матрицу и матрицу теории графов).
Инвариант имеет вид (1) для единичных весов ветвей (метрических коэффициентов).
Если веса не единичны, то и метрическая матрица неединичная, и соотношение (1) принимает более общий вид, включающий метрическую матрицу.
Таким образом, эта закономерность связывает метрику и структуру в пространстве сети.
Ниже (рис.3.1) представлен пример сети из четырех свободных ветвей и четырех связанных ветвей.
Пути в сети из четырех свободных ветвей
на рис.3.1б обозначены как ра, а пути юзанных принимают значения от 1 до 4, перечисляя все пути.
В свободной сети пути совпадают направлением ветвей.
Если выразить пути в связанной сети через пути в свободной сети, рь
Са Ра, то коэффициенты при путях-ветвях имеют вид матрицыь преобразования Сьа: b а Сь Pl Р2 Рз Р4 1 1 -1 1 1 1 -1 а Сь а это матрица путей в сети отдельных, свободных ветвей в пути в сети связанных ветвей.
Обратное выражение путей в связанной сети через пути свободных ветвей, т.е.
фактически через ветви, а также их матрица преобразования, имеют вид:
В А Pl = bi = Р2' Pi Р2 = ь2 = Pi' с? = р2 Рз = Ьз = -Pi' + р2 + рз' Рз Р4 = Ь4 = -Pi' + р2' + Рз' Р4' Р4 pa “ a Pb J J m m 1 1 -1 1 1 -1 1 1 -1

[Back]