Проверяемый текст
Соболев, Яков Алексеевич. Научные основы и новые процессы формообразования корпусных конструкций из анизотропных материалов при кратковременной ползучести (Диссертация, июнь 2000)
[стр. 134]

134 3.
Показано, что для обеспечения постоянной эквивалентной скорости деформации,
закон изменения давления (усилия) во времени деформирования носит сложный характер.
В начальный момент формоизменения наблюдается резкий рост давления
(усилия).
Дальнейшее увеличение времени деформирования сопровождается уменьшением величины давления газа (усилия).
Большим значениям эквивалентной скорости деформации отвечает большая величина максимума давления
(усилия), которая смещается в сторону начала координат.
4.
Установлено, что изменение относительной толщины в куполе заготовки hc происходит более интенсивно по сравнению с изменением относительной толщины в базовых точках при свободном деформировании мембраны в прямоугольную матрицу.

С ростом времени деформирования t эта разница увеличивается и может достигать 50%.
.

5.

Оценено влияние параметров закона нагружения ар, пр и эквивалентной скорости деформации на предельные возможности формоизменения, связанные с разрушением заготовки при достижении уровня накопленных микроповреждений
сое =1 (или =1) и с локальной потерей устойчивости заготовки.
Сначала, имеет место локализация деформации, затем последующее разрушение от накопления микроповреждений.
С ростом параметров ар и пр, а также величины эквивалентной скорости деформации при изотермическом деформировании
материалов, поведение которых описывается энергетической теорией ползучести и повреждаемости, предельные возможности формоизменения ухудшаются.
Предельные возможности формоизменения анизотропных материалов, поведение которых описывается кинетической теорией ползучести и повреждаемости, не зависят от указанных выше параметров нагружения.
[стр. 176]

175 роста или падения исследуемых параметров зависит от величины эквивалентной скорости деформации .
Уменьшение эквивалентной скорости деформации приводит к более плавному их увеличению или уменьшению, а также к смещению величины максимального давления р в сторону большего времени t.
Установлено, что увеличение эквивалентной скорости деформации от 0,5 • 10—3 1/с до 0,8 • 10—3 1/с приводит к росту максимального давления на 30% при изотермической штамповке трапециевидного элемента трехслойной листовой конструкции.
4.
Оценено влияние параметров закона нагружения ар, пр и эквивалентной скорости деформации на предельные возможности формоизменения, связанные с разрушением заготовки при достижении уровня накопленных микроповреждений
®е=1 (или со^ =1) и с локальной потерей устойчивости заготовки.
Показано, что время разрушения Z* (критическое время), половина угла раствора дуги в момент разрушения а* и высота изделия Я* уменьшаются, а угол конуса полости трапециевидного элемента а* и толщина Л* возрастает с ростом параметров ар и пр, а также величины эквивалентной скорости деформации' при формоизменении материалов, поведение которых описывается энергетической теорией ползучести и повреждаемости.
Установлено, что при свободном изотермическом деформировании узкой прямоугольной мембраны увеличение величины параметра нагружения пр от 0,4 до 0,6 при фиксированном значении ар =0,1 МПа/сПр приводит к уменьшению величины а* на 20% и возрастанию относительной предельной толщины заготовки Л* на 33%.
Рост параметра нагружения ар от 0,05 до 0j2 МПа/сПр сопровождается уменьшением половины угла раствора ду

[стр.,239]

239 в сторону начала координат, а вид кривой р = p(t) носит более резкий характер.
3.
Рост параметров нагружения ар, пр и эквивалентной скорости деформации E,ei приводит к резкому уменьшению толщины в вершине куполообразной заготовки hc и в точках малой ha и большой hy осей эллипсоида при свободном деформировании мембраны в прямоугольную матрицу, а также толщины в куполе заготовки hc и в месте ее закрепления при изотермического формоизменения сферических оболочек.
4.
Установлено, что изменение относительной толщины в куполе заготовки hc происходит более интенсивно по сравнению с изменением относительной толщины в базовых точках
для исследуемых процессов.
С ростом времени деформирования t эта разница увеличивается и может достигать 50%.
5.

Показано, что увеличение параметров нагружения ар, пр и эквивалентной скорости деформации приводит к1: резкому уменьшению утонения толщины в куполе и в базовых точках заготовки, а также к уменьшению относительной предельной высоты заготовки и времени разрушения.
6.
Установлено, что в зависимости от условий нагружения (ар, пр и ^el), геометрических размеров оболочки Ь/а и величины коэффициента нормальной анизотропии R разрушение оболочки по критерию накопления повреждений может происходить в куполе заготовки или в точке большой оси эллипсоида при свободном деформировании мембраны в прямоугольную матрицу.
При изотермическом формоизменения сферических оболочек разрушение заготовки происходит в куполе детали, где имеет место максимальное утонение заготовки.
7.
Показано, что предельные возможности формоизменения при изотермическом деформировании анизотропных материалов, поведение которых описывается кинетической теорией ползучести и повреждаемости, не зависят

[стр.,348]

348 5.
Показано, что для обеспечения постоянной эквивалентной скорости деформации
в куполе заготовки, закон изменения давления р во времени деформирования t носит сложный характер.
В начальный момент формоизменения наблюдается резкий рост давления
р.
Дальнейшее увеличение времени деформирования t сопровождается уменьшением величины давления газа р.
Большим значениям эквивалентной скорости деформации отвечает большая величина максимума давления
газа р, которая смещается в сторону начала координат, а вид кривой р = p(t) носит более резкий характер.
Установлен характер изменения геометрических размеров заготовки в процессе изотермического деформирования в зависимости от параметров нагружения ар, пр и эквивалентной скорости деформации .
Показано, что изменение относительной толщины в куполе заготовки hc происходит более интенсивно по сравнению с изменением относительной толщины в базовых точках при свободном деформировании узкой прямоугольной мембраны и деформировании мембраны в прямоугольную матрицу, а также при формоизменении сферической оболочки.
С ростом времени деформирования t эта разница увеличивается и может достигать 50%.

6.
Оценено влияние параметров закона нагружения ар, пр и эквивалентной скорости деформации на предельные возможности формоизменения, связанные с разрушением заготовки при достижении уровня накопленных микроповреждений
юе=1 (или 0^ = 1) и с локальной потерей устойчивости заготовки.
7.
Установлено, что при медленном горячем деформировании многослойных листовых конструкций и куполообразных деталей сначала имеет

[Back]